Unconditionally stable, second-order schemes for gradient-regularized, non-convex, finite-strain elasticity modeling martensitic phase transformations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditionally Stable Schemes for Higher Order Inpainting

Abstract. Inpainting methods with third and fourth order equations have certain advantages in comparison with equations of second order such as the smooth interpolation of image information even over large distances. Because of this such methods became very popular in the last couple of years. Solving higher order equations numerically can be a computational demanding task though. Discretizing ...

متن کامل

Unconditionally Stable Schemes for Non-stationary Convection-Diffusion Equations

Convection-diffusion problem are the base for continuum mechanics. The main features of these problems are associated with an indefinite operator the problem. In this work we construct unconditionally stable scheme for non-stationary convection-diffusion equations, which are based on use of new variables. Also, we consider these equations in the form of convection-diffusion-reaction and constru...

متن کامل

Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models

We introduce provably unconditionally stable mixed variational methods for phasefield models. Our formulation is based on a mixed finite element method for space discretization and a new second-order accurate time integration algorithm. The fully-discrete formulation inherits the main characteristics of conserved phase dynamics, namely, mass conservation and nonlinear stability with respect to ...

متن کامل

The Second-order Backward Differentiation Formula Is Unconditionally Zero-stable *

Previous studies of the stability of the second-order backward differentiation formula have concluded that stability is possible only if restrictions are placed on the stepsize ratios, for example, limiting the ratio to some value less than 1 + fi. However, actual implementations of the BDFs differ from the usual theoretical models of such methods; in particular, practical codes use scaled deri...

متن کامل

Gradient schemes for linear and non-linear elasticity equations

The Gradient Scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the Gradient Scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2018

ISSN: 0045-7825

DOI: 10.1016/j.cma.2018.04.036